Integrate DeepSeek APIs into Your Apps in Just 5 Minutes

This guide walks you through integrating DeepSeek APIs into your app. From API key setup to testing, debugging, and generating code snippets, learn how to build AI-powered features quickly and easily.

Oliver Kingsley

Oliver Kingsley

11 February 2025

Integrate DeepSeek APIs into Your Apps in Just 5 Minutes

In the age of AI-powered applications, integrating advanced language models into your software can unlock unprecedented capabilities—from intelligent chatbots to data analysis tools. DeepSeek’s APIs offer cutting-edge AI functionalities, but the real challenge lies in seamlessly integrating them into your app without getting bogged down by debugging or boilerplate code.

This guide walks you through the entire process of integrating DeepSeek APIs into your application, leveraging an intuitive API platform — Apidog to test, debug, and generate ready-to-use code snippets in minutes. Whether you’re building a Python backend or a JavaScript frontend, by the end of this article, you’ll have a fully functional API integration with minimal effort.


Prerequisites

  1. A DeepSeek account (sign up here).
  2. Basic knowledge of REST APIs and programming (Python/JavaScript used here).
  3. A tool like Apidog to test APIs.

Step 1: Get the DeepSeek API Key

Every API request requires authentication. Here’s how to get your key:

  1. Log into your DeepSeek account.
  2. Navigate to API Keys under your account settings.
  3. Click Create new APl key and copy it.

⚠️ Important: Treat this key like a password. Never expose it in client-side code or public repositories.


Step 2: Test the DeepSeek API

DeepSeek’s API documentation created by Apidog provides an interactive playground to test endpoints directly on the documentation without writing a single line of code. Here’s how:

1. Open the Documentation: Navigate to the Create Chat Completion endpoint.

DeepSeek chat completion APIs

2. Authenticate:

Authorization: Bearer YOUR_API_KEY  
Adding the DeepSeek API keys

3. Craft Your Request:

In the request body, specify the model (e.g., deepseek-chat) and add a message:

{
  "model": "deepseek-chat",
  "messages": [
    {"role": "user", "content": "Explain quantum computing in 3 sentences."}
  ]
}
crafting DeepSeek API request

4. Send the Request: Click Send and view the response in the real time.

getting DeekSeek response in real time

Why This Matters: Testing APIs manually helps you validate payload structures and error handling before writing integration code.


Step 3: Generate Code Snippets for Your Stack

Apidog allows you to generate out-of-box business codes for different languages and frameworks based on the API documentation that can be directly used in your stack. Here is how:

1. Open the DeekSeek project on the Apidog app:

Click on "Run in Apidog" to run the project on Apidog app

2. Choose Your Language:

generating code directly from API documentation created by Apidog
choose the language to generate the codes

3. Copy-Paste the Code:

import requests
import json

url = "https://api.deepseek.com/chat/completions"

payload = json.dumps({
   "messages": [
      {
         "content": "You are a helpful assistant",
         "role": "system"
      },
      {
         "content": "Hi",
         "role": "user"
      }
   ],
   "model": "deepseek-chat",
   "frequency_penalty": 0,
   "max_tokens": 2048,
   "presence_penalty": 0,
   "response_format": {
      "type": "text"
   },
   "stop": None,
   "stream": False,
   "stream_options": None,
   "temperature": 1,
   "top_p": 1,
   "tools": None,
   "tool_choice": "none",
   "logprobs": False,
   "top_logprobs": None
})
headers = {
   'Authorization': 'Bearer {{API_KEY}}',
   'Content-Type': 'application/json'
}

response = requests.request("POST", url, headers=headers, data=payload)

print(response.text)
var myHeaders = new Headers();
myHeaders.append("Authorization", "Bearer {{API_KEY}}");
myHeaders.append("Content-Type", "application/json");

var raw = JSON.stringify({
   "messages": [
      {
         "content": "You are a helpful assistant",
         "role": "system"
      },
      {
         "content": "Hi",
         "role": "user"
      }
   ],
   "model": "deepseek-chat",
   "frequency_penalty": 0,
   "max_tokens": 2048,
   "presence_penalty": 0,
   "response_format": {
      "type": "text"
   },
   "stop": null,
   "stream": false,
   "stream_options": null,
   "temperature": 1,
   "top_p": 1,
   "tools": null,
   "tool_choice": "none",
   "logprobs": false,
   "top_logprobs": null
});

var requestOptions = {
   method: 'POST',
   headers: myHeaders,
   body: raw,
   redirect: 'follow'
};

fetch("https://api.deepseek.com/chat/completions", requestOptions)
   .then(response => response.text())
   .then(result => console.log(result))
   .catch(error => console.log('error', error));

4. Customize the Code: Replace YOUR_API_KEY and modify the message content.


Step 4: Integrate into Your Application

Let’s build a simple Python CLI app that uses DeepSeek’s API to answer user questions.

Project Setup

1. Create a directory and install dependencies:

mkdir deepseek-cli && cd deepseek-cli  
pip install requests python-dotenv  

2. Store your API key securely using .env:

echo "DEEPSEEK_API_KEY=your_api_key_here" > .env  

Code Implementation

import argparse
import asyncio
import json
import os
import sys
from typing import AsyncGenerator, Generator

import httpx
import requests


async def async_deepseek(
    api_key: str,
    model: str,
    messages: list,
    temperature: float
) -> AsyncGenerator[str, None]:
    """
    Asynchronous generator for streaming DeepSeek responses
    """
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {api_key}",
    }
    data = {
        "model": model,
        "messages": messages,
        "temperature": temperature,
        "stream": True,
    }

    async with httpx.AsyncClient() as client:
        async with client.stream(
            "POST",
            "https://api.deepseek.com/v1/chat/completions",
            headers=headers,
            json=data,
        ) as response:
            response.raise_for_status()
            async for line in response.aiter_lines():
                if line.startswith("data: "):
                    try:
                        json_data = json.loads(line[6:])
                        if chunk := json_data["choices"][0]["delta"].get("content", ""):
                            yield chunk
                    except json.JSONDecodeError:
                        pass


def sync_deepseek(
    api_key: str,
    model: str,
    messages: list,
    temperature: float
) -> Generator[str, None, None]:
    """
    Synchronous generator for streaming DeepSeek responses
    """
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {api_key}",
    }
    data = {
        "model": model,
        "messages": messages,
        "temperature": temperature,
        "stream": True,
    }

    with requests.post(
        "https://api.deepseek.com/v1/chat/completions",
        headers=headers,
        json=data,
        stream=True,
    ) as response:
        response.raise_for_status()
        for line in response.iter_lines():
            if line:
                decoded_line = line.decode("utf-8")
                if decoded_line.startswith("data: "):
                    try:
                        json_data = json.loads(decoded_line[6:])
                        if chunk := json_data["choices"][0]["delta"].get("content", ""):
                            yield chunk
                    except json.JSONDecodeError:
                        pass


def main():
    parser = argparse.ArgumentParser(
        description="DeepSeek CLI Client - Chat with DeepSeek models"
    )
    parser.add_argument(
        "prompt",
        type=str,
        help="Your message to send to DeepSeek"
    )
    parser.add_argument(
        "--model",
        type=str,
        default="deepseek-chat",
        help="Model to use (default: deepseek-chat)"
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.7,
        help="Temperature parameter (default: 0.7)"
    )
    parser.add_argument(
        "--async-mode",
        action="store_true",
        help="Use asynchronous mode (requires Python 3.7+)"
    )
    args = parser.parse_args()

    api_key = os.getenv("DEEPSEEK_API_KEY")
    if not api_key:
        print("Error: Set your API key in DEEPSEEK_API_KEY environment variable")
        sys.exit(1)

    messages = [{"role": "user", "content": args.prompt}]

    try:
        if args.async_mode:
            async def run_async():
                try:
                    async for chunk in async_deepseek(
                        api_key=api_key,
                        model=args.model,
                        messages=messages,
                        temperature=args.temperature
                    ):
                        print(chunk, end="", flush=True)
                    print()
                except httpx.HTTPStatusError as e:
                    print(f"\nHTTP error occurred: {e.response.status_code} {e.response.reason_phrase}")
                except Exception as e:
                    print(f"\nAn error occurred: {str(e)}")

            asyncio.run(run_async())
        else:
            try:
                for chunk in sync_deepseek(
                    api_key=api_key,
                    model=args.model,
                    messages=messages,
                    temperature=args.temperature
                ):
                    print(chunk, end="", flush=True)
                print()
            except requests.exceptions.HTTPError as e:
                print(f"\nHTTP error occurred: {e.response.status_code} {e.response.reason_phrase}")
            except Exception as e:
                print(f"\nAn error occurred: {str(e)}")

    except KeyboardInterrupt:
        print("\n\nOperation interrupted by user")
        sys.exit(0)


if __name__ == "__main__":
    main()

Run the App

Type a question (e.g., “What’s the capital of France?”) and see the response!


Step 5: Handle Errors and Edge Cases

APIs can fail due to rate limits, invalid keys, or network issues. Implement robust error handling:

1. Check HTTP Status Codes:

2. Retry Mechanisms:

from time import sleep

def get_deepseek_response(prompt, retries=3):
    # ... existing code ...
    except requests.exceptions.RequestException as e:
        if retries > 0:
            sleep(2)
            return get_deepseek_response(prompt, retries - 1)
        else:
            return f"Error: {str(e)}"

3. Validate Inputs:
Ensure prompts are within token limits and properly formatted.


Step 6: Optimize for Production

  1. Cache Responses: Use Redis or Memcached to store frequent queries.
  2. Monitor Usage: Track API calls to avoid exceeding quotas.
  3. Async Processing: For high-throughput apps, use async libraries like aiohttp (Python) or axios (JavaScript).

Conclusion

Integrating DeepSeek’s APIs into your app doesn’t have to be a time sink. By using interactive documentation to test endpoints, generate code, and debug on the fly, you can ship AI-powered features in hours—not days.

The example above is just the tip of the iceberg. With DeepSeek’s models, you can build anything from automated content generators to AI tutors. Now that you’ve got the blueprint, go ahead and transform your app into an AI powerhouse!

Explore more

How to Use Deepseek R1 Locally with Cursor

How to Use Deepseek R1 Locally with Cursor

Learn how to set up and configure local DeepSeek R1 with Cursor IDE for private, cost-effective AI coding assistance.

4 June 2025

How to Run Gemma 3n on Android ?

How to Run Gemma 3n on Android ?

Learn how to install and run Gemma 3n on Android using Google AI Edge Gallery.

3 June 2025

How to Use Google Search Console MCP Server

How to Use Google Search Console MCP Server

This guide details Google Search Console MCP for powerful SEO analytics and Apidog MCP Server for AI-driven API development. Learn to install, configure, and leverage these tools to boost productivity and gain deeper insights into your web performance and API specifications.

30 May 2025

Practice API Design-first in Apidog

Discover an easier way to build and use APIs