プロも初心者も必見!ローカル実行に最適なLLMツールTOP5

この記事では、Llama.cpp、GPT4All、LM Studio、Ollama、Janの5つの優れたローカルLLMツールを紹介します。これらは、それぞれに固有のパフォーマンス、使いやすさ、プライバシーの利点を提供し、プロジェクトの多様なニーズに対応しています。Apidogを使用してAPI管理を最適化し、ローカル開発体験を向上させましょう。

中村 拓也

中村 拓也

27 2月 2025

プロも初心者も必見!ローカル実行に最適なLLMツールTOP5

ローカルマシンでLLMを実行することにはいくつかの利点があります。まず、データに対する完全なコントロールを得られ、プライバシーが保たれます。次に、高額なAPIコールや月額サブスクリプションを気にせずに実験ができます。さらに、ローカルデプロイメントは、これらのモデルがどのように動作するかを学ぶための実践的な方法を提供します。

さらに、LLMをローカルで実行することで、ネットワークのレイテンシの問題やクラウドサービスへの依存を回避できます。これは、特にコードベースと密接に統合する必要があるプロジェクトに取り組む場合、より速く構築、テスト、反復できることを意味します。

💡
まだダウンロードしていない場合は、Apidogを無料でダウンロードしてください。これは、これらのLLMツールをワークフローに統合する際にAPIテストと管理を効率的に行うための優れたコンパニオンです。
ボタン

LLMの理解: 簡単な概要

私たちのおすすめを紹介する前に、LLMとは何かを簡単に説明しましょう。簡単に言えば、大型言語モデル(LLM)は、大量のテキストデータで訓練されたAIモデルです。これらのモデルは、言語の統計的パターンを学習し、提供されたプロンプトに基づいて人間のようなテキストを生成することができます。

LLMは多くの現代のAIアプリケーションの中心です。チャットボット、ライティングアシスタント、コードジェネレーター、さらには高度な対話型エージェントを支えています。しかし、これらのモデルを実行すること、特に大規模なものは、リソースを大量に消費します。だからこそ、信頼できるツールを使用してローカルでそれらを実行することが非常に重要です。

ローカルのLLMツールを使用すると、データをリモートサーバーに送信することなく、これらのモデルで実験できます。これにより、セキュリティとパフォーマンスが向上します。このチュートリアルを通じて、「LLM」というキーワードが強調され、各ツールがこれらの強力なモデルを自分のハードウェア上で活用するのにどのように役立つかを探ります。

1: Llama.cpp

Llama.cppは、ローカルでLLMを実行する際に最も人気のあるツールの1つといえるでしょう。Georgi Gerganovによって作成され、活気のあるコミュニティによって維持されているこのC/C++ライブラリは、LLaMAや他のモデルに対する推論を最小限の依存関係で実行するように設計されています。

Llama.cppのロゴ

Llama.cppが好きな理由

始め方

  1. インストール: GitHubからリポジトリをクローンし、自分のマシンでコードをコンパイルします。
  2. モデルの設定: お好きなモデル(例えば、量子化されたLLaMAのバリエーション)をダウンロードし、提供されたコマンドラインユーティリティを使用して推論を開始します。
  3. カスタマイズ: コンテキストの長さ、温度、ビームサイズなどのパラメータを調整して、モデルの出力がどのように変わるかを見てみましょう。

例えば、シンプルなコマンドは次のようになります:

./main -m ./models/llama-7b.gguf -p "プログラミングに関するジョークを教えて" --temp 0.7 --top_k 100

このコマンドはモデルを読み込み、プロンプトに基づいてテキストを生成します。この設定のシンプルさは、ローカルでのLLM推論を始めようとする人にとって大きな利点です。

Llama.cppからスムーズに移行し、少し異なるアプローチをとる別の素晴らしいツールを見ていきましょう。

2: GPT4All

GPT4Allは、Nomic AIによって設計されたオープンソースのエコシステムで、LLMsへのアクセスを民主化しています。GPT4Allの最もエキサイティングな側面の1つは、消費者向けハードウェア上で実行できるように構築されているため、高価なマシンを必要とせずに実験することができる点です。

GPT4All公式ウェブサイト

GPT4Allの主な機能

GPT4Allを始める方法

  1. インストール: GPT4Allのウェブサイトからダウンロードします。インストールプロセスは簡単で、Windows、macOS、Linux用の事前コンパイルされたバイナリが利用できます。
  2. モデルの実行: インストールが完了したら、アプリケーションを起動し、さまざまな事前調整済みモデルの中から選択します。このツールはカジュアルな実験に最適なチャットインターフェースも提供しています。
  3. カスタマイズ: モデルの応答の長さやクリエイティビティ設定などのパラメータを調整し、出力がどのように変わるかを見てみましょう。これにより、さまざまな条件下でLLMがどのように機能するかを理解できます。

例えば、次のようなプロンプトを入力することがあります:

人工知能に関する興味深い事実は何ですか?

そしてGPT4Allは、すべてインターネット接続なしにフレンドリーで洞察に富んだ応答を生成します。

3: LM Studio

次に、LM Studioは、特にモデル管理を簡単に行いたい方に最適なローカルでLLMを実行するための別の優れたツールです。

LM Studio公式ウェブサイト

LM Studioの特長は何ですか?

LM Studioの設定方法

  1. ダウンロードとインストール: LM Studioのウェブサイトを訪れ、オペレーティングシステム用のインストーラをダウンロードし、設定手順に従います。
  2. 起動して探索: アプリケーションを開き、利用可能なモデルのライブラリを探索し、自分のニーズに合ったモデルを選択します。
  3. 実験: 組み込みのチャットインターフェースを使用してモデルと対話します。また、複数のモデルを同時に実験して、パフォーマンスや品質を比較することもできます。

たとえば、創造的なライティングプロジェクトに取り組んでいる場合、LM Studioのインターフェースを使用することで、モデルを簡単に切り替え、リアルタイムで出力を微調整することができます。視覚的なフィードバックと使いやすさは、初めての方やローカルソリューションを必要としているプロフェッショナルにとって強力な選択肢です。

4: Ollama

次に紹介するのはOllamaで、シンプルさと機能性に焦点を当てた強力で使いやすいコマンドラインツールです。Ollamaは、複雑なセットアップの煩わしさを避けながらLLMを実行、作成、共有する手助けをすることを目的としています。

Ollamaのホームページ

Ollamaを選ぶ理由

Ollamaの設定方法

1. インストール: Ollamaのウェブサイトにアクセスし、オペレーティングシステム用のインストーラをダウンロードします。インストールはターミナルでいくつかのコマンドを実行するだけなので簡単です。

2. モデルを実行: インストールが完了したら、次のようなコマンドを使用します:

ollama run llama3

このコマンドは、Llama 3モデル(または他のサポートされているモデル)を自動的にダウンロードし、推論プロセスを開始します。

3. マルチモダリティで実験: 画像をサポートするモデルを実行してみてください。たとえば、準備された画像ファイルがある場合、プロンプトにドラッグアンドドロップするか(または画像用のAPIパラメータを使用)して、モデルがどのように応答するかを確認できます。

Ollamaは、LLMをローカルに迅速にプロトタイピングまたはデプロイする際に特に魅力的です。そのシンプルさは力を犠牲にすることなく、初心者でも経験豊富な開発者でも理想的です。

5: Jan

最後に紹介するのはJanです。Janはオープンソースのローカルファーストプラットフォームで、データプライバシーとオフライン操作を重視する人々の間で徐々に人気を集めています。その哲学はシンプルです。ユーザーが強力なLLMを完全に自分のハードウェア上で実行できるようにし、隠れたデータ転送を排除します。

Janのホームページ

Janの特長は何ですか?

Janを始める方法

  1. ダウンロードとインストール: Janの公式ウェブサイトまたはGitHubリポジトリにアクセスします。インストール手順は簡単で、迅速に使用開始できるように設計されています。
  2. 起動とカスタマイズ: Janを開き、さまざまなプリインストールされたモデルから選択します。必要に応じて、Hugging Faceなどの外部ソースからモデルをインポートできます。
  3. 実験と拡張: チャットインターフェースを使用してLLMと対話します。パラメータを調整したり、プラグインをインストールしたりして、Janがワークフローにどのように適応するかを見てみましょう。その柔軟性により、ローカルLLM体験を正確なニーズに合わせて調整できます。

Janは、本当にローカルでプライバシーを重視したLLM実行の精神を具現化しています。すべてのデータを自分のマシンに保持しながら、手間のかからないカスタマイズ可能なツールを望む人に最適です。

プロのヒント: SSEデバッグを使用したLLMレスポンスのストリーミング

LLM(大型言語モデル)を扱う場合、リアルタイムのインタラクションはユーザー体験を大いに向上させることができます。チャットボットがライブ応答を提供する場合や、データが生成されるにつれて動的に更新されるコンテンツツールの場合、ストリーミングは重要です。サーバー送信イベント(SSE)は、これに対する効率的なソリューションを提供し、サーバーがクライアントに単一のHTTP接続を介して更新をプッシュできるようにします。双方向プロトコル(WebSocketsなど)とは異なり、SSEはシンプルでわかりやすいため、リアルタイム機能に最適です。

SSEのデバッグは難しい場合があります。そこにApidogが登場します。ApidogのSSEデバッグ機能を使用すると、SSEストリームを簡単にテスト、モニタリング、トラブルシューティングできます。このセクションでは、なぜSSEがLLM APIのデバッグに重要であるのかを探り、Apidogを使用してSSE接続を設定し、テストするためのステップバイステップのチュートリアルをお届けします。

なぜSSEがLLM APIのデバッグに重要なのか

チュートリアルに入る前に、SSEがLLM APIのデバッグに適している理由を以下に示します:

試してみる準備はできましたか? ApidogでSSEデバッグを設定しましょう。

ステップバイステップチュートリアル: ApidogでのSSEデバッグの使用

以下の手順に従って、ApidogでSSE接続を設定し、テストします。

ボタン

ステップ1: Apidogで新しいAPIを作成

Apidogで新しいHTTPプロジェクトを作成してAPIリクエストをテストおよびデバッグします。SSEストリーム用にAIモデルのURLを持つAPIを追加します。この例ではDeepSeekを使用します。(プロのヒント: ApidogのAPIハブから用意されたDeepSeek APIプロジェクトをクローンしてください。)

Apidogで新しいエンドポイントを作成

ステップ2: リクエストを送信

APIを追加した後、送信をクリックしてリクエストを送信します。応答ヘッダーにContent-Type: text/event-streamが含まれている場合、ApidogはSSEストリームを検出し、データを解析してリアルタイムで表示します。

Apidogを使用したSSEデバッグ

ステップ3: リアルタイムの応答を表示

Apidogのタイムラインビューは、AIモデルが応答をストリーミングする際にリアルタイムで更新され、各部分を動的に表示します。これにより、AIの思考プロセスを追跡し、出力生成についての洞察を得ることができます。

サーバー送信イベントを1つずつ見る

ステップ4: 完全な応答でのSSEレスポンスの表示

SSEはフラグメントにデータをストリーミングするため、追加の処理が必要です。Apidogのオートマージ機能は、OpenAI、Gemini、またはClaudeのようなモデルからの断片的なAI応答を自動的に組み合わせ、完全な出力にします。

SSEイベントを完全な応答にマージ

Apidogのオートマージ機能は、OpenAI、Gemini、またはClaudeのようなモデルからの断片的なAI応答を自動的に組み合わせ、手動のデータ処理を排除します。

DeepSeek R1のような推論モデルの場合、ApidogのタイムラインビューはAIの思考プロセスを視覚的にマッピングするため、デバッグや結論形成の理解が容易になります。

推論モデルの思考プロセスを可視化

Apidogは次の形式のAI応答をシームレスに認識し、マージします:

応答がこれらの形式に一致すると、Apidogは断片を自動的に結合し、手動での接続を排除し、SSEデバッグをスムーズにします。

結論と次のステップ

今日は多くのことをカバーしました!要約すると、ローカルでLLMを実行するための5つの際立ったツールは以下のとおりです:

  1. Llama.cpp: 軽量で高速、幅広いハードウェアサポートを備えた高度に効率的なコマンドラインツールを望む開発者に最適です。
  2. GPT4All: コンシューマグレードのハードウェア上で動作するローカルファーストのエコシステムで、直感的なインターフェースと強力なパフォーマンスを提供します。
  3. LM Studio: グラフィカルインターフェースを好む方に最適で、モデル管理が容易で広範なカスタマイズオプションを提供します。
  4. Ollama: マルチモーダル機能を備え、瞬時にモデルをパッケージ化するための「Modelfile」システムを備えた堅牢なコマンドラインツールです。
  5. Jan: プライバシーを最優先し、完全にオフラインで動作するオープンソースプラットフォームで、さまざまなLLMを統合するための拡張可能なフレームワークを提供します。

これらのツールは、パフォーマンスや使いやすさ、プライバシーなど、ユニークな利点を提供します。プロジェクトの要件に応じて、これらのソリューションの1つがあなたのニーズに最適なフィットとなるかもしれません。ローカルLLMツールの美しさは、データ漏洩、サブスクリプションコスト、ネットワークレイテンシを心配することなく探索と実験を可能にすることです。

ローカルLLMを試行することは学習プロセスであることを忘れないでください。これらのツールを自由に組み合わせ、さまざまな構成をテストし、自分のワークフローに最も合ったものを見つけてください。さらに、これらのモデルを自分のアプリケーションに統合する場合、Apidogのようなツールを使用すると、Server-sent Events(SSE)を使用してLLM APIエンドポイントを管理しテストする際に役立ちます。Apidogを無料でダウンロードして、ローカル開発体験を向上させることを忘れないでください。

ボタン
Apidog — オールインワンAPI開発プラットフォーム

次のステップ

これで、プロジェクトに最適なローカルLLMツールを選ぶためのしっかりとした基礎ができたはずです。LLM技術の風景は急速に進化しており、ローカルでモデルを実行することはプライベートでスケーラブル、高性能なAIソリューションを構築するための重要なステップです。

これらのツールを試す中で、無限の可能性があることを発見するでしょう。チャットボット、コードアシスタント、カスタムクリエイティブライティングツールなど、ローカルLLMは必要な柔軟性とパワーを提供できます。旅を楽しみ、コーディングを楽しんでください!

Explore more

開発者必見!トップ10のステーブルコインAPI紹介

開発者必見!トップ10のステーブルコインAPI紹介

この記事では、開発者が革新を起こすために活用できる、リアルタイムデータと安全なトランザクションなどの機能を備えた10の優れたステーブルコイン取引APIを評価。各APIの強みを分析し、国際決済から市場分析まで多様なユースケースをサポートします。

31 5月 2025

開発者向け:今すぐ試したい10個の無料AI API

開発者向け:今すぐ試したい10個の無料AI API

無料AI APIは、開発者にプロジェクトへAI機能を組み込む機会を提供します。APIを用いて、自然言語処理やコンピュータビジョンなどの高度な技術が簡単にアプリに追加可能であり、長期的な戦略の基盤にもなります。

30 5月 2025

VibeCoder向け: 注目の2025年MCPサーバー10選

VibeCoder向け: 注目の2025年MCPサーバー10選

おすすめのMCPサーバーをCursor環境に統合することで、開発ワークフローが大幅に強化され、コンテキスト切り替えの時間を削減し、コーディングに集中できます。まずはFirecrawlから始め、BrowserbaseやMagic MCPなどを探求して開発体験を向上させましょう。

29 5月 2025

ApidogでAPIデザイン中心のアプローチを取る

APIの開発と利用をよりシンプルなことにする方法を発見できる