Apidog

All-in-one Collaborative API Development Platform

API Design

API Documentation

API Debugging

API Mocking

API Automated Testing

How to Build AI Agents with SmolAgents and Deepseek R1

This system will enable efficient document processing, intelligent search, and human-like reasoning—ideal for research, customer support, and knowledge management applications.

Emmanuel Mumba

Emmanuel Mumba

Updated on February 19, 2025

Introduction

The integration of advanced reasoning models and lightweight frameworks is transforming how AI systems retrieve, process, and present information. In this guide, we will build a Retrieval-Augmented Generation (RAG) system using DeepSeek R1, a high-performance reasoning model, and SmolAgents, a minimalist agent framework from Hugging Face. This system will enable efficient document processing, intelligent search, and human-like reasoning—ideal for research, customer support, and knowledge management applications.

💡
If you’re looking for a powerful API management tool that can streamline your workflow while working with DeepSeek R1, don’t miss out on Apidog. You can download Apidog for free today, and it’s perfectly tailored to work with projects like DeepSeek R1, making your development journey smoother and more enjoyable!
button

System Requirments to Run the Setup

The AI agent will perform four core tasks:

  1. Load and Process PDFs: Convert documents into searchable text chunks.
  2. Create a Vector Database: Store embeddings for fast semantic search.
  3. Retrieve and Reason: Use DeepSeek R1 to analyze retrieved data and generate answers.
  4. Interact with Users: Provide a conversational interface for seamless interaction.


Step 1: Loading and Processing PDF Documents

Tools and Libraries

  • LangChain: For document loading and text splitting.
  • ChromaDB: A lightweight vector database for storing embeddings.
  • Hugging Face Embeddings: To convert text into vector representations.

Implementation

1.1 Load PDF Files

Use LangChain's DirectoryLoader to load all PDFs from a directory. Each PDF is split into pages for processing.

from langchain_community.document_loaders import DirectoryLoader, PyPDFLoader  
from langchain.text_splitter import RecursiveCharacterTextSplitter  

def load_and_process_pdfs(data_dir: str):  
    loader = DirectoryLoader(  
        data_dir,  
        glob="**/*.pdf",  
        loader_cls=PyPDFLoader  
    )  
    documents = loader.load()  

    # Split documents into chunks  
    text_splitter = RecursiveCharacterTextSplitter(  
        chunk_size=1000,  
        chunk_overlap=200,  
        length_function=len,  
    )  
    return text_splitter.split_documents(documents)  

1.2 Create a Vector Store

Convert text chunks into embeddings and store them in ChromaDB for efficient retrieval.

from langchain_huggingface import HuggingFaceEmbeddings  
from langchain_community.vectorstores import Chroma  
import os  
import shutil  

def create_vector_store(chunks, persist_directory: str):  
    if os.path.exists(persist_directory):  
        shutil.rmtree(persist_directory)  

    embeddings = HuggingFaceEmbeddings(  
        model_name="sentence-transformers/all-mpnet-base-v2",  
        model_kwargs={'device': 'cpu'}  
    )  

    vectordb = Chroma.from_documents(  
        documents=chunks,  
        embedding=embeddings,  
        persist_directory=persist_directory  
    )  
    return vectordb  

Key Considerations

  • Chunk Size: 1000 characters with 200-character overlap balances context retention and search efficiency.
  • Embedding Model: all-mpnet-base-v2 provides high-quality sentence embeddings.

Step 2: Implementing the Reasoning Agent with DeepSeek R1

Why DeepSeek R1?

DeepSeek R1 specializes in multi-step reasoning, enabling it to break down complex queries, infer relationships, and generate structured answers.

Initialize the Reasoning Model

Configure DeepSeek R1 via Ollama for local inference:

from smolagents import OpenAIServerModel, CodeAgent  

reasoning_model_id = "deepseek-r1:7b"  

def get_model(model_id):  
    return OpenAIServerModel(  
        model_id=model_id,  
        api_base="http://localhost:11434/v1",  
        api_key="ollama"  
    )  

reasoning_model = get_model(reasoning_model_id)  
reasoner = CodeAgent(  
    tools=[],  
    model=reasoning_model,  
    add_base_tools=False,  
    max_steps=2  # Limit reasoning iterations for efficiency  
)  

Step 3: Building the Retrieval-Augmented Generation (RAG) Pipeline

Tool Design

Create a RAG tool that combines document retrieval with DeepSeek R1’s reasoning capabilities.

from smolagents import tool  

@tool  
def rag_with_reasoner(user_query: str) -> str:  
    # Retrieve relevant documents  
    docs = vectordb.similarity_search(user_query, k=3)  
    context = "\n\n".join(doc.page_content for doc in docs)  

    # Generate a reasoning prompt  
    prompt = f"""  
    Based on the following context, answer the user's question concisely.  
    If the information is insufficient, suggest a refined query.  

    Context:  
    {context}  

    Question: {user_query}  

    Answer:  
    """  

    return reasoner.run(prompt, reset=False)  

Key Features

  • Contextual Prompts: Inject retrieved documents into the prompt for grounded responses.
  • Fallback Mechanism: The model suggests better queries when data is insufficient.

Step 4: Deploying the Primary AI Agent

Orchestrating the Workflow

The primary agent, powered by Llama 3.2, manages user interactions and invokes the RAG tool as needed:

from smolagents import ToolCallingAgent, GradioUI  

tool_model = get_model("llama3.2")  
primary_agent = ToolCallingAgent(  
    tools=[rag_with_reasoner],  
    model=tool_model,  
    add_base_tools=False,  
    max_steps=3  
)  

def main():  
    GradioUI(primary_agent).launch()  

if __name__ == "__main__":  
    main()  

User Interface

The UI provides a simple web interface for real-time interaction:

  • Users input queries.
  • The agent retrieves documents, reasons with DeepSeek R1, and returns answers.

The integration of DeepSeek R1 and SmolAgents delivers a powerful AI solution that combines enhanced reasoning for dissecting complex queries, efficient retrieval via ChromaDB’s fast semantic search, and cost-effective local deployment to bypass reliance on costly cloud APIs. Its scalable architecture allows seamless integration of new tools, making it ideal for applications like research (analyzing technical documents), customer support (resolving FAQs), and knowledge management (transforming static resources into interactive systems).

Future enhancements could expand document support to include Word, HTML, and markdown, integrate real-time web search for broader context, and implement feedback loops to refine answer accuracy over time. This framework offers a versatile foundation for building intelligent, adaptive AI assistants tailored to diverse needs.

15 Best REST API Clients and Testing Tools for 2025Viewpoint

15 Best REST API Clients and Testing Tools for 2025

This article dives deep into the 15 best REST API clients and testing tools predicted to lead the pack in 2025, helping you select the perfect fit for your needs. We'll explore everything from comprehensive all-in-one platforms to lightweight, focused utilities.

INEZA FELIN-MICHEL

April 23, 2025

Cursor vs IDEA: Why Choose Cursor AI Over JetBrains IntelliJ IDEA?Viewpoint

Cursor vs IDEA: Why Choose Cursor AI Over JetBrains IntelliJ IDEA?

A straightforward comparison of Cursor AI and JetBrains IntelliJ IDEA. We break down the key differences in coding assistance, AI integration, and developer experience to help you decide which IDE is best for your workflow.

Emmanuel Mumba

April 23, 2025

Testing CUA: the MCP Server for Computer Use Agents, Here're My TakesViewpoint

Testing CUA: the MCP Server for Computer Use Agents, Here're My Takes

Learn to install and test the CUA MCP server in this beginner's guide! Make AI open a terminal and list files with natural language. My takes: local, powerful, and fun!

Ashley Goolam

April 23, 2025