How to Build AI Agents with SmolAgents and Deepseek R1

This system will enable efficient document processing, intelligent search, and human-like reasoning—ideal for research, customer support, and knowledge management applications.

Emmanuel Mumba

Emmanuel Mumba

15 June 2025

How to Build AI Agents with SmolAgents and Deepseek R1

Introduction

The integration of advanced reasoning models and lightweight frameworks is transforming how AI systems retrieve, process, and present information. In this guide, we will build a Retrieval-Augmented Generation (RAG) system using DeepSeek R1, a high-performance reasoning model, and SmolAgents, a minimalist agent framework from Hugging Face. This system will enable efficient document processing, intelligent search, and human-like reasoning—ideal for research, customer support, and knowledge management applications.

💡
If you’re looking for a powerful API management tool that can streamline your workflow while working with DeepSeek R1, don’t miss out on Apidog. You can download Apidog for free today, and it’s perfectly tailored to work with projects like DeepSeek R1, making your development journey smoother and more enjoyable!
button

System Requirments to Run the Setup

The AI agent will perform four core tasks:

  1. Load and Process PDFs: Convert documents into searchable text chunks.
  2. Create a Vector Database: Store embeddings for fast semantic search.
  3. Retrieve and Reason: Use DeepSeek R1 to analyze retrieved data and generate answers.
  4. Interact with Users: Provide a conversational interface for seamless interaction.


Step 1: Loading and Processing PDF Documents

Tools and Libraries

Implementation

1.1 Load PDF Files

Use LangChain's DirectoryLoader to load all PDFs from a directory. Each PDF is split into pages for processing.

from langchain_community.document_loaders import DirectoryLoader, PyPDFLoader  
from langchain.text_splitter import RecursiveCharacterTextSplitter  

def load_and_process_pdfs(data_dir: str):  
    loader = DirectoryLoader(  
        data_dir,  
        glob="**/*.pdf",  
        loader_cls=PyPDFLoader  
    )  
    documents = loader.load()  

    # Split documents into chunks  
    text_splitter = RecursiveCharacterTextSplitter(  
        chunk_size=1000,  
        chunk_overlap=200,  
        length_function=len,  
    )  
    return text_splitter.split_documents(documents)  

1.2 Create a Vector Store

Convert text chunks into embeddings and store them in ChromaDB for efficient retrieval.

from langchain_huggingface import HuggingFaceEmbeddings  
from langchain_community.vectorstores import Chroma  
import os  
import shutil  

def create_vector_store(chunks, persist_directory: str):  
    if os.path.exists(persist_directory):  
        shutil.rmtree(persist_directory)  

    embeddings = HuggingFaceEmbeddings(  
        model_name="sentence-transformers/all-mpnet-base-v2",  
        model_kwargs={'device': 'cpu'}  
    )  

    vectordb = Chroma.from_documents(  
        documents=chunks,  
        embedding=embeddings,  
        persist_directory=persist_directory  
    )  
    return vectordb  

Key Considerations


Step 2: Implementing the Reasoning Agent with DeepSeek R1

Why DeepSeek R1?

DeepSeek R1 specializes in multi-step reasoning, enabling it to break down complex queries, infer relationships, and generate structured answers.

Initialize the Reasoning Model

Configure DeepSeek R1 via Ollama for local inference:

from smolagents import OpenAIServerModel, CodeAgent  

reasoning_model_id = "deepseek-r1:7b"  

def get_model(model_id):  
    return OpenAIServerModel(  
        model_id=model_id,  
        api_base="http://localhost:11434/v1",  
        api_key="ollama"  
    )  

reasoning_model = get_model(reasoning_model_id)  
reasoner = CodeAgent(  
    tools=[],  
    model=reasoning_model,  
    add_base_tools=False,  
    max_steps=2  # Limit reasoning iterations for efficiency  
)  

Step 3: Building the Retrieval-Augmented Generation (RAG) Pipeline

Tool Design

Create a RAG tool that combines document retrieval with DeepSeek R1’s reasoning capabilities.

from smolagents import tool  

@tool  
def rag_with_reasoner(user_query: str) -> str:  
    # Retrieve relevant documents  
    docs = vectordb.similarity_search(user_query, k=3)  
    context = "\n\n".join(doc.page_content for doc in docs)  

    # Generate a reasoning prompt  
    prompt = f"""  
    Based on the following context, answer the user's question concisely.  
    If the information is insufficient, suggest a refined query.  

    Context:  
    {context}  

    Question: {user_query}  

    Answer:  
    """  

    return reasoner.run(prompt, reset=False)  

Key Features


Step 4: Deploying the Primary AI Agent

Orchestrating the Workflow

The primary agent, powered by Llama 3.2, manages user interactions and invokes the RAG tool as needed:

from smolagents import ToolCallingAgent, GradioUI  

tool_model = get_model("llama3.2")  
primary_agent = ToolCallingAgent(  
    tools=[rag_with_reasoner],  
    model=tool_model,  
    add_base_tools=False,  
    max_steps=3  
)  

def main():  
    GradioUI(primary_agent).launch()  

if __name__ == "__main__":  
    main()  

User Interface

The UI provides a simple web interface for real-time interaction:


The integration of DeepSeek R1 and SmolAgents delivers a powerful AI solution that combines enhanced reasoning for dissecting complex queries, efficient retrieval via ChromaDB’s fast semantic search, and cost-effective local deployment to bypass reliance on costly cloud APIs. Its scalable architecture allows seamless integration of new tools, making it ideal for applications like research (analyzing technical documents), customer support (resolving FAQs), and knowledge management (transforming static resources into interactive systems).

Future enhancements could expand document support to include Word, HTML, and markdown, integrate real-time web search for broader context, and implement feedback loops to refine answer accuracy over time. This framework offers a versatile foundation for building intelligent, adaptive AI assistants tailored to diverse needs.

Explore more

What Is Status Code: 202 Accepted? The API's "I've Got It From Here"

What Is Status Code: 202 Accepted? The API's "I've Got It From Here"

What is HTTP 202 Accepted? Learn how this status code handles asynchronous processing, its use cases, and how it differs from 200 and 201. Master API workflows with tools like Apidog.

15 September 2025

Apidog vs GitBook: Which Tool Is Best for API Documentation in 2025?

Apidog vs GitBook: Which Tool Is Best for API Documentation in 2025?

Choosing between Apidog and GitBook for API documentation? Discover how Apidog outperforms GitBook with live testing, auto sync, mock servers, and zero-code setup, all for free. Stop wasting time on static docs.

15 September 2025

Is Claude Code Getting Dumber? The Real Truth About Switching to CodeX CLI

Is Claude Code Getting Dumber? The Real Truth About Switching to CodeX CLI

Discover if Claude Code's performance is declining and whether CodeX CLI offers better coding assistance. Compare features, benchmarks, and real-world performance to make the right choice for your development workflow in 2025.

15 September 2025

Practice API Design-first in Apidog

Discover an easier way to build and use APIs