How to Deploy Llama 4 to AWS, Azure & Hugging Face

This guide provides step-by-step instructions for deploying Meta's Llama 4 models (Scout and Maverick) on three major platforms: AWS, Azure, and Hugging Face.

Ashley Goolam

Ashley Goolam

7 April 2025

How to Deploy Llama 4 to AWS, Azure & Hugging Face

This guide provides step-by-step instructions for deploying Meta's Llama 4 models (Scout and Maverick) on three major platforms: AWS, Azure, and Hugging Face. These models offer advanced capabilities including multimodal processing, massive context windows, and state-of-the-art performance.

💡
Developer Tip: Before diving into deployment, consider upgrading your API testing toolkit! Apidog offers a more intuitive, feature-rich alternative to Postman with better support for AI model endpoints, collaborative testing, and automated API documentation. Your LLM deployment workflow will thank you for making the switch.
button

Prerequisites & Hardware Requirements  for Llama 4 Deployment

AWS (via TensorFuse)

Azure

(This aligns with general Azure ML guidance for large language models, but no Llama 4-specific documentation was found to confirm exact requirements.)

Hugging Face

1. Deploying Llama 4 to AWS using TensorFuse

1.1 Set Up AWS and TensorFuse

Install TensorFuse CLI:

pip install tensorfuse

Configure AWS credentials:

aws configure

Initialize TensorFuse with your AWS account:

tensorkube init

1.2 Create Required Secrets

Store your Hugging Face token:

tensorkube secret create hugging-face-secret YOUR_HF_TOKEN --env default HUGGING_FACE_HUB_TOKEN=

Create API authentication token:

tensorkube secret create vllm-token vllm-key --env default VLLM_API_KEY=

1.3 Create Dockerfile for Llama 4

For Scout model:

FROM vllm/vllm-openai:v0.8.3
ENV HF_HUB_ENABLE_HF_TRANSFER=1
EXPOSE 80
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server", \\\\
            "--model", "meta-llama/Llama-4-Scout-17B-16E-Instruct", \\\\
            "--dtype", "bfloat16", \\\\
            "--trust-remote-code", \\\\
            "--tensor-parallel-size", "8", \\\\
            "--max-model-len", "1000000", \\\\
            "--port", "80", \\\\
            "--override-generation-config", "{\\\\"attn_temperature_tuning\\\\": true}", \\\\
            "--limit-mm-per-prompt", "image=10", \\\\
            "--kv-cache-dtype", "fp8", \\\\
            "--api-key", "${VLLM_API_KEY}"]

For Maverick model:

FROM vllm/vllm-openai:v0.8.3
ENV HF_HUB_ENABLE_HF_TRANSFER=1
EXPOSE 80
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server", \\\\
            "--model", "meta-llama/Llama-4-Maverick-17B-128E-Instruct", \\\\
            "--dtype", "bfloat16", \\\\
            "--trust-remote-code", \\\\
            "--tensor-parallel-size", "8", \\\\
            "--max-model-len", "430000", \\\\
            "--port", "80", \\\\
            "--override-generation-config", "{\\\\"attn_temperature_tuning\\\\": true}", \\\\
            "--limit-mm-per-prompt", "image=10", \\\\
            "--kv-cache-dtype", "fp8", \\\\
            "--api-key", "${VLLM_API_KEY}"]

1.4 Create Deployment Configuration

Create deployment.yaml:

gpus: 8
gpu_type: h100
secret:
  - huggingfacesecret
  - vllmtoken
min-scale: 1
readiness:
  httpGet:
    path: /health
    port: 80

1.5 Deploy to AWS

Deploy your service:

tensorkube deploy --config-file ./deployment.yaml

1.6 Access Your Deployed Service

List deployments to get your endpoint URL:

tensorkube deployment list

Test your deployment:

curl --request POST \\\\
  --url YOUR_APP_URL/v1/completions \\\\
  --header 'Content-Type: application/json' \\\\
  --header 'Authorization: Bearer vllm-key' \\\\
  --data '{
    "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
    "prompt": "Earth to Llama 4. What can you do?",
    "max_tokens": 1000
  }'

2. Deploying Llama 4 to Azure

2.1 Set Up Azure ML Workspace

Install Azure CLI and ML extensions:

pip install azure-cli azure-ml
az login

Create Azure ML workspace:

az ml workspace create --name llama4-workspace --resource-group your-resource-group

2.2 Create Compute Cluster

az ml compute create --name llama4-cluster --type amlcompute --min-instances 0 \\\\
  --max-instances 1 --size Standard_ND40rs_v2 --vnet-name your-vnet-name \\\\
  --subnet your-subnet --resource-group your-resource-group --workspace-name llama4-workspace

2.3 Register Llama 4 Model in Azure ML

Create model.yml:

$schema: <https://azuremlschemas.azureedge.net/latest/model.schema.json>
name: llama-4-scout
version: 1
path: .
properties:
  model_name: "meta-llama/Llama-4-Scout-17B-16E-Instruct"

Register the model:

az ml model create --file model.yml --resource-group your-resource-group --workspace-name llama4-workspace

2.4 Create Deployment Configuration

Create deployment.yml:

$schema: <https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json>
name: llama4-deployment
endpoint_name: llama4-endpoint
model: azureml:llama-4-scout@latest
instance_type: Standard_ND40rs_v2
instance_count: 1
environment_variables:
  HUGGING_FACE_HUB_TOKEN: ${{secrets.HF_TOKEN}}
  VLLM_API_KEY: ${{secrets.VLLM_KEY}}
environment:
  image: vllm/vllm-openai:v0.8.3
  conda_file: conda.yml

Create conda.yml:

channels:
  - conda-forge
dependencies:
  - python=3.10
  - pip
  - pip:
    - vllm==0.8.3
    - transformers
    - accelerate

2.5 Create Endpoint and Deploy

az ml online-endpoint create --name llama4-endpoint \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

az ml online-deployment create --file deployment.yml \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

2.6 Test the Deployment

az ml online-endpoint invoke --name llama4-endpoint --request-file request.json \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

Where request.json contains:

{
  "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
  "prompt": "Earth to Llama 4. What can you do?",
  "max_tokens": 1000
}

3. Deploying Llama 4 to Hugging Face

3.1 Set Up Hugging Face Account

  1. Create a Hugging Face account at https://huggingface.co/
  2. Accept the license agreement for Llama 4 models at https://huggingface.co/meta-llama

3.2 Deploy Using Hugging Face Spaces

Navigate to https://huggingface.co/spaces and click "Create new Space"

Configure your Space:

Clone the Space repository:

git clone <https://huggingface.co/spaces/YOUR_USERNAME/llama4-deployment>
cd llama4-deployment

3.3 Create Application Files

Create app.py:

import gradio as gr
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import os

# Add your HF token to environment or Secrets
os.environ["HUGGING_FACE_HUB_TOKEN"] = "YOUR_HF_TOKEN"

# Load model and tokenizer with appropriate configuration
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Create pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_length=2048
)

def generate_text(prompt, max_length=1000, temperature=0.7):
    # Format prompt according to Llama 4 format
    formatted_prompt = f"<|begin_of_text|><|user|>\\\\n{prompt}<|end_of_text|>\\\\n<|assistant|>"

    outputs = pipe(
        formatted_prompt,
        max_length=len(tokenizer.encode(formatted_prompt)) + max_length,
        temperature=temperature,
        do_sample=True,
    )

    return outputs[0]['generated_text'].replace(formatted_prompt, "")

# Create Gradio interface
demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt"),
        gr.Slider(minimum=100, maximum=2000, value=1000, step=100, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
    ],
    outputs="text",
    title="Llama 4 Demo",
    description="Generate text using Meta's Llama 4 model",
)

demo.launch()

Create requirements.txt:

accelerate>=0.20.3
bitsandbytes>=0.41.1
gradio>=3.50.0
torch>=2.0.1
transformers>=4.34.0

3.4 Deploy to Hugging Face

Push to your Hugging Face Space:

git add app.py requirements.txt
git commit -m "Add Llama 4 deployment"
git push

3.5 Monitor Deployment

  1. Visit your Space URL: https://huggingface.co/spaces/YOUR_USERNAME/llama4-deployment
  2. The first build will take time as it needs to download and set up the model
  3. Once deployed, you'll see a Gradio interface where you can interact with the model

4. Testing and Interacting with Your Deployments

4.1 Using Python Client for API Access (AWS & Azure)

import openai

# For AWS
client = openai.OpenAI(
    base_url="YOUR_AWS_URL/v1",  # From tensorkube deployment list
    api_key="vllm-key"  # Your configured API key
)

# For Azure
client = openai.AzureOpenAI(
    azure_endpoint="YOUR_AZURE_ENDPOINT",
    api_key="YOUR_API_KEY",
    api_version="2023-05-15"
)

# Make a text completion request
response = client.completions.create(
    model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
    prompt="Write a short poem about artificial intelligence.",
    max_tokens=200
)

print(response.choices[0].text)

# For multimodal capabilities (if supported)
import base64

# Load image as base64
with open("image.jpg", "rb") as image_file:
    image_base64 = base64.b64encode(image_file.read()).decode('utf-8')

# Create chat completion with the image
response = client.chat.completions.create(
    model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Describe this image:"},
                {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
            ]
        }
    ],
    max_tokens=300
)

print(response.choices[0].message.content)

Conclusion

You now have step-by-step instructions for deploying Llama 4 models on AWS, Azure, and Hugging Face. Each platform offers different advantages:

Choose the platform that best fits your specific requirements for cost, scale, performance, and ease of management.

Explore more

What is n8n? How to Run n8n Locally

What is n8n? How to Run n8n Locally

Discover n8n, an open-source workflow automation tool! This tutorial explains what n8n is and how to run it locally with Docker for private, cost-free workflows.

10 June 2025

Redocly Tutorial: How to Use the Redocly CLI

Redocly Tutorial: How to Use the Redocly CLI

Welcome to this comprehensive tutorial on the Redocly CLI! Redocly CLI is a powerful, all-in-one command-line tool for OpenAPI and Swagger definitions. It helps you build, manage, and quality-check your API descriptions throughout the entire API lifecycle. Whether you're a developer, a technical writer, or an API product manager, this tool has something for you. This tutorial aims to be a deep dive into the Redocly CLI, taking you from a beginner to a confident user. We will cover everything fr

9 June 2025

What is Claude Code GitHub Actions?

What is Claude Code GitHub Actions?

Learn Claude Code Github Action! This tutorial shows how to automate coding, create PRs, and fix bugs in GitHub repos using AI-powered Github Actions.

9 June 2025

Practice API Design-first in Apidog

Discover an easier way to build and use APIs