Apidog

All-in-one Collaborative API Development Platform

API Design

API Documentation

API Debugging

API Mocking

API Automated Testing

How to Deploy Llama 4 to AWS, Azure & Hugging Face

This guide provides step-by-step instructions for deploying Meta's Llama 4 models (Scout and Maverick) on three major platforms: AWS, Azure, and Hugging Face.

Ashley Goolam

Ashley Goolam

Updated on April 7, 2025

This guide provides step-by-step instructions for deploying Meta's Llama 4 models (Scout and Maverick) on three major platforms: AWS, Azure, and Hugging Face. These models offer advanced capabilities including multimodal processing, massive context windows, and state-of-the-art performance.

💡
Developer Tip: Before diving into deployment, consider upgrading your API testing toolkit! Apidog offers a more intuitive, feature-rich alternative to Postman with better support for AI model endpoints, collaborative testing, and automated API documentation. Your LLM deployment workflow will thank you for making the switch.
button

Prerequisites & Hardware Requirements  for Llama 4 Deployment

  • Access to Llama 4 models through Meta's license agreement
  • Hugging Face account with READ access token
  • AWS, Azure, or Hugging Face Pro account as needed for your deployment target
  • Basic understanding of containerization and cloud services

AWS (via TensorFuse)

  • Scout: 8x H100 GPUs for 1M token context
  • Maverick: 8x H100 GPUs for 430K token context
  • Alternative: 8x A100 GPUs (reduced context window)

Azure

(This aligns with general Azure ML guidance for large language models, but no Llama 4-specific documentation was found to confirm exact requirements.)

  • Recommended: ND A100 v4-series (8 NVIDIA A100 GPUs)
  • Minimum: Standard_ND40rs_v2 or higher

Hugging Face

  • Recommended: A10G-Large Space hardware
  • Alternative: A100-Large (premium hardware option)
  • Free tier hardware is insufficient for full models

1. Deploying Llama 4 to AWS using TensorFuse

1.1 Set Up AWS and TensorFuse

Install TensorFuse CLI:

pip install tensorfuse

Configure AWS credentials:

aws configure

Initialize TensorFuse with your AWS account:

tensorkube init

1.2 Create Required Secrets

Store your Hugging Face token:

tensorkube secret create hugging-face-secret YOUR_HF_TOKEN --env default HUGGING_FACE_HUB_TOKEN=

Create API authentication token:

tensorkube secret create vllm-token vllm-key --env default VLLM_API_KEY=

1.3 Create Dockerfile for Llama 4

For Scout model:

FROM vllm/vllm-openai:v0.8.3
ENV HF_HUB_ENABLE_HF_TRANSFER=1
EXPOSE 80
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server", \\\\
            "--model", "meta-llama/Llama-4-Scout-17B-16E-Instruct", \\\\
            "--dtype", "bfloat16", \\\\
            "--trust-remote-code", \\\\
            "--tensor-parallel-size", "8", \\\\
            "--max-model-len", "1000000", \\\\
            "--port", "80", \\\\
            "--override-generation-config", "{\\\\"attn_temperature_tuning\\\\": true}", \\\\
            "--limit-mm-per-prompt", "image=10", \\\\
            "--kv-cache-dtype", "fp8", \\\\
            "--api-key", "${VLLM_API_KEY}"]

For Maverick model:

FROM vllm/vllm-openai:v0.8.3
ENV HF_HUB_ENABLE_HF_TRANSFER=1
EXPOSE 80
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server", \\\\
            "--model", "meta-llama/Llama-4-Maverick-17B-128E-Instruct", \\\\
            "--dtype", "bfloat16", \\\\
            "--trust-remote-code", \\\\
            "--tensor-parallel-size", "8", \\\\
            "--max-model-len", "430000", \\\\
            "--port", "80", \\\\
            "--override-generation-config", "{\\\\"attn_temperature_tuning\\\\": true}", \\\\
            "--limit-mm-per-prompt", "image=10", \\\\
            "--kv-cache-dtype", "fp8", \\\\
            "--api-key", "${VLLM_API_KEY}"]

1.4 Create Deployment Configuration

Create deployment.yaml:

gpus: 8
gpu_type: h100
secret:
  - huggingfacesecret
  - vllmtoken
min-scale: 1
readiness:
  httpGet:
    path: /health
    port: 80

1.5 Deploy to AWS

Deploy your service:

tensorkube deploy --config-file ./deployment.yaml

1.6 Access Your Deployed Service

List deployments to get your endpoint URL:

tensorkube deployment list

Test your deployment:

curl --request POST \\\\
  --url YOUR_APP_URL/v1/completions \\\\
  --header 'Content-Type: application/json' \\\\
  --header 'Authorization: Bearer vllm-key' \\\\
  --data '{
    "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
    "prompt": "Earth to Llama 4. What can you do?",
    "max_tokens": 1000
  }'

2. Deploying Llama 4 to Azure

2.1 Set Up Azure ML Workspace

Install Azure CLI and ML extensions:

pip install azure-cli azure-ml
az login

Create Azure ML workspace:

az ml workspace create --name llama4-workspace --resource-group your-resource-group

2.2 Create Compute Cluster

az ml compute create --name llama4-cluster --type amlcompute --min-instances 0 \\\\
  --max-instances 1 --size Standard_ND40rs_v2 --vnet-name your-vnet-name \\\\
  --subnet your-subnet --resource-group your-resource-group --workspace-name llama4-workspace

2.3 Register Llama 4 Model in Azure ML

Create model.yml:

$schema: <https://azuremlschemas.azureedge.net/latest/model.schema.json>
name: llama-4-scout
version: 1
path: .
properties:
  model_name: "meta-llama/Llama-4-Scout-17B-16E-Instruct"

Register the model:

az ml model create --file model.yml --resource-group your-resource-group --workspace-name llama4-workspace

2.4 Create Deployment Configuration

Create deployment.yml:

$schema: <https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json>
name: llama4-deployment
endpoint_name: llama4-endpoint
model: azureml:llama-4-scout@latest
instance_type: Standard_ND40rs_v2
instance_count: 1
environment_variables:
  HUGGING_FACE_HUB_TOKEN: ${{secrets.HF_TOKEN}}
  VLLM_API_KEY: ${{secrets.VLLM_KEY}}
environment:
  image: vllm/vllm-openai:v0.8.3
  conda_file: conda.yml

Create conda.yml:

channels:
  - conda-forge
dependencies:
  - python=3.10
  - pip
  - pip:
    - vllm==0.8.3
    - transformers
    - accelerate

2.5 Create Endpoint and Deploy

az ml online-endpoint create --name llama4-endpoint \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

az ml online-deployment create --file deployment.yml \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

2.6 Test the Deployment

az ml online-endpoint invoke --name llama4-endpoint --request-file request.json \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

Where request.json contains:

{
  "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
  "prompt": "Earth to Llama 4. What can you do?",
  "max_tokens": 1000
}

3. Deploying Llama 4 to Hugging Face

3.1 Set Up Hugging Face Account

  1. Create a Hugging Face account at https://huggingface.co/
  2. Accept the license agreement for Llama 4 models at https://huggingface.co/meta-llama

3.2 Deploy Using Hugging Face Spaces

Navigate to https://huggingface.co/spaces and click "Create new Space"

Configure your Space:

  • Name: llama4-deployment
  • License: Select appropriate license
  • SDK: Choose Gradio
  • Space Hardware: A10G-Large (for best performance)
  • Visibility: Private or Public based on your needs

Clone the Space repository:

git clone <https://huggingface.co/spaces/YOUR_USERNAME/llama4-deployment>
cd llama4-deployment

3.3 Create Application Files

Create app.py:

import gradio as gr
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import os

# Add your HF token to environment or Secrets
os.environ["HUGGING_FACE_HUB_TOKEN"] = "YOUR_HF_TOKEN"

# Load model and tokenizer with appropriate configuration
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Create pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_length=2048
)

def generate_text(prompt, max_length=1000, temperature=0.7):
    # Format prompt according to Llama 4 format
    formatted_prompt = f"<|begin_of_text|><|user|>\\\\n{prompt}<|end_of_text|>\\\\n<|assistant|>"

    outputs = pipe(
        formatted_prompt,
        max_length=len(tokenizer.encode(formatted_prompt)) + max_length,
        temperature=temperature,
        do_sample=True,
    )

    return outputs[0]['generated_text'].replace(formatted_prompt, "")

# Create Gradio interface
demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt"),
        gr.Slider(minimum=100, maximum=2000, value=1000, step=100, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
    ],
    outputs="text",
    title="Llama 4 Demo",
    description="Generate text using Meta's Llama 4 model",
)

demo.launch()

Create requirements.txt:

accelerate>=0.20.3
bitsandbytes>=0.41.1
gradio>=3.50.0
torch>=2.0.1
transformers>=4.34.0

3.4 Deploy to Hugging Face

Push to your Hugging Face Space:

git add app.py requirements.txt
git commit -m "Add Llama 4 deployment"
git push

3.5 Monitor Deployment

  1. Visit your Space URL: https://huggingface.co/spaces/YOUR_USERNAME/llama4-deployment
  2. The first build will take time as it needs to download and set up the model
  3. Once deployed, you'll see a Gradio interface where you can interact with the model

4. Testing and Interacting with Your Deployments

4.1 Using Python Client for API Access (AWS & Azure)

import openai

# For AWS
client = openai.OpenAI(
    base_url="YOUR_AWS_URL/v1",  # From tensorkube deployment list
    api_key="vllm-key"  # Your configured API key
)

# For Azure
client = openai.AzureOpenAI(
    azure_endpoint="YOUR_AZURE_ENDPOINT",
    api_key="YOUR_API_KEY",
    api_version="2023-05-15"
)

# Make a text completion request
response = client.completions.create(
    model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
    prompt="Write a short poem about artificial intelligence.",
    max_tokens=200
)

print(response.choices[0].text)

# For multimodal capabilities (if supported)
import base64

# Load image as base64
with open("image.jpg", "rb") as image_file:
    image_base64 = base64.b64encode(image_file.read()).decode('utf-8')

# Create chat completion with the image
response = client.chat.completions.create(
    model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Describe this image:"},
                {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
            ]
        }
    ],
    max_tokens=300
)

print(response.choices[0].message.content)

Conclusion

You now have step-by-step instructions for deploying Llama 4 models on AWS, Azure, and Hugging Face. Each platform offers different advantages:

  • AWS with TensorFuse: Full control, high scalability, best performance
  • Azure: Integration with Microsoft ecosystem, managed ML services
  • Hugging Face: Simplest setup, great for prototyping and demos

Choose the platform that best fits your specific requirements for cost, scale, performance, and ease of management.

How to Run Qwen 3 Locally with Ollama & VLLMViewpoint

How to Run Qwen 3 Locally with Ollama & VLLM

The landscape of large language models (LLMs) is evolving at breakneck speed. Models are becoming more powerful, capable, and, importantly, more accessible. The Qwen team recently unveiled Qwen3, their latest generation of LLMs, boasting impressive performance across various benchmarks, including coding, math, and general reasoning. With flagship models like the Mixture-of-Experts (MoE) Qwen3-235B-A22B rivaling established giants and even smaller dense models like Qwen3-4B competing with previou

Ashley Innocent

April 29, 2025

How to Use Deepseek V3 with Cursor for FreeViewpoint

How to Use Deepseek V3 with Cursor for Free

Learn to use Deepseek V3 for FREE with Cursor in this step-by-step beginner's guide! Code a Python factorial function with AI. My takes: fast and cost-effective!

Ashley Goolam

April 29, 2025

How Qwen 3 Outcompetes OpenAI and DeepSeekViewpoint

How Qwen 3 Outcompetes OpenAI and DeepSeek

Explore how Qwen 3’s MoE architecture and open-weight models beat OpenAI and DeepSeek in performance and versatility.

Ashley Innocent

April 29, 2025