How to Deploy Llama 4 to AWS, Azure & Hugging Face

This guide provides step-by-step instructions for deploying Meta's Llama 4 models (Scout and Maverick) on three major platforms: AWS, Azure, and Hugging Face.

Ashley Goolam

Ashley Goolam

23 June 2025

How to Deploy Llama 4 to AWS, Azure & Hugging Face

This guide provides step-by-step instructions for deploying Meta's Llama 4 models (Scout and Maverick) on three major platforms: AWS, Azure, and Hugging Face. These models offer advanced capabilities including multimodal processing, massive context windows, and state-of-the-art performance.

💡
Developer Tip: Before diving into deployment, consider upgrading your API testing toolkit! Apidog offers a more intuitive, feature-rich alternative to Postman with better support for AI model endpoints, collaborative testing, and automated API documentation. Your LLM deployment workflow will thank you for making the switch.
button

Prerequisites & Hardware Requirements  for Llama 4 Deployment

AWS (via TensorFuse)

Azure

(This aligns with general Azure ML guidance for large language models, but no Llama 4-specific documentation was found to confirm exact requirements.)

Hugging Face

1. Deploying Llama 4 to AWS using TensorFuse

1.1 Set Up AWS and TensorFuse

Install TensorFuse CLI:

pip install tensorfuse

Configure AWS credentials:

aws configure

Initialize TensorFuse with your AWS account:

tensorkube init

1.2 Create Required Secrets

Store your Hugging Face token:

tensorkube secret create hugging-face-secret YOUR_HF_TOKEN --env default HUGGING_FACE_HUB_TOKEN=

Create API authentication token:

tensorkube secret create vllm-token vllm-key --env default VLLM_API_KEY=

1.3 Create Dockerfile for Llama 4

For Scout model:

FROM vllm/vllm-openai:v0.8.3
ENV HF_HUB_ENABLE_HF_TRANSFER=1
EXPOSE 80
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server", \\\\
            "--model", "meta-llama/Llama-4-Scout-17B-16E-Instruct", \\\\
            "--dtype", "bfloat16", \\\\
            "--trust-remote-code", \\\\
            "--tensor-parallel-size", "8", \\\\
            "--max-model-len", "1000000", \\\\
            "--port", "80", \\\\
            "--override-generation-config", "{\\\\"attn_temperature_tuning\\\\": true}", \\\\
            "--limit-mm-per-prompt", "image=10", \\\\
            "--kv-cache-dtype", "fp8", \\\\
            "--api-key", "${VLLM_API_KEY}"]

For Maverick model:

FROM vllm/vllm-openai:v0.8.3
ENV HF_HUB_ENABLE_HF_TRANSFER=1
EXPOSE 80
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server", \\\\
            "--model", "meta-llama/Llama-4-Maverick-17B-128E-Instruct", \\\\
            "--dtype", "bfloat16", \\\\
            "--trust-remote-code", \\\\
            "--tensor-parallel-size", "8", \\\\
            "--max-model-len", "430000", \\\\
            "--port", "80", \\\\
            "--override-generation-config", "{\\\\"attn_temperature_tuning\\\\": true}", \\\\
            "--limit-mm-per-prompt", "image=10", \\\\
            "--kv-cache-dtype", "fp8", \\\\
            "--api-key", "${VLLM_API_KEY}"]

1.4 Create Deployment Configuration

Create deployment.yaml:

gpus: 8
gpu_type: h100
secret:
  - huggingfacesecret
  - vllmtoken
min-scale: 1
readiness:
  httpGet:
    path: /health
    port: 80

1.5 Deploy to AWS

Deploy your service:

tensorkube deploy --config-file ./deployment.yaml

1.6 Access Your Deployed Service

List deployments to get your endpoint URL:

tensorkube deployment list

Test your deployment:

curl --request POST \\\\
  --url YOUR_APP_URL/v1/completions \\\\
  --header 'Content-Type: application/json' \\\\
  --header 'Authorization: Bearer vllm-key' \\\\
  --data '{
    "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
    "prompt": "Earth to Llama 4. What can you do?",
    "max_tokens": 1000
  }'

2. Deploying Llama 4 to Azure

2.1 Set Up Azure ML Workspace

Install Azure CLI and ML extensions:

pip install azure-cli azure-ml
az login

Create Azure ML workspace:

az ml workspace create --name llama4-workspace --resource-group your-resource-group

2.2 Create Compute Cluster

az ml compute create --name llama4-cluster --type amlcompute --min-instances 0 \\\\
  --max-instances 1 --size Standard_ND40rs_v2 --vnet-name your-vnet-name \\\\
  --subnet your-subnet --resource-group your-resource-group --workspace-name llama4-workspace

2.3 Register Llama 4 Model in Azure ML

Create model.yml:

$schema: <https://azuremlschemas.azureedge.net/latest/model.schema.json>
name: llama-4-scout
version: 1
path: .
properties:
  model_name: "meta-llama/Llama-4-Scout-17B-16E-Instruct"

Register the model:

az ml model create --file model.yml --resource-group your-resource-group --workspace-name llama4-workspace

2.4 Create Deployment Configuration

Create deployment.yml:

$schema: <https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json>
name: llama4-deployment
endpoint_name: llama4-endpoint
model: azureml:llama-4-scout@latest
instance_type: Standard_ND40rs_v2
instance_count: 1
environment_variables:
  HUGGING_FACE_HUB_TOKEN: ${{secrets.HF_TOKEN}}
  VLLM_API_KEY: ${{secrets.VLLM_KEY}}
environment:
  image: vllm/vllm-openai:v0.8.3
  conda_file: conda.yml

Create conda.yml:

channels:
  - conda-forge
dependencies:
  - python=3.10
  - pip
  - pip:
    - vllm==0.8.3
    - transformers
    - accelerate

2.5 Create Endpoint and Deploy

az ml online-endpoint create --name llama4-endpoint \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

az ml online-deployment create --file deployment.yml \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

2.6 Test the Deployment

az ml online-endpoint invoke --name llama4-endpoint --request-file request.json \\\\
  --resource-group your-resource-group --workspace-name llama4-workspace

Where request.json contains:

{
  "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
  "prompt": "Earth to Llama 4. What can you do?",
  "max_tokens": 1000
}

3. Deploying Llama 4 to Hugging Face

3.1 Set Up Hugging Face Account

  1. Create a Hugging Face account at https://huggingface.co/
  2. Accept the license agreement for Llama 4 models at https://huggingface.co/meta-llama

3.2 Deploy Using Hugging Face Spaces

Navigate to https://huggingface.co/spaces and click "Create new Space"

Configure your Space:

Clone the Space repository:

git clone <https://huggingface.co/spaces/YOUR_USERNAME/llama4-deployment>
cd llama4-deployment

3.3 Create Application Files

Create app.py:

import gradio as gr
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import os

# Add your HF token to environment or Secrets
os.environ["HUGGING_FACE_HUB_TOKEN"] = "YOUR_HF_TOKEN"

# Load model and tokenizer with appropriate configuration
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Create pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_length=2048
)

def generate_text(prompt, max_length=1000, temperature=0.7):
    # Format prompt according to Llama 4 format
    formatted_prompt = f"<|begin_of_text|><|user|>\\\\n{prompt}<|end_of_text|>\\\\n<|assistant|>"

    outputs = pipe(
        formatted_prompt,
        max_length=len(tokenizer.encode(formatted_prompt)) + max_length,
        temperature=temperature,
        do_sample=True,
    )

    return outputs[0]['generated_text'].replace(formatted_prompt, "")

# Create Gradio interface
demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt"),
        gr.Slider(minimum=100, maximum=2000, value=1000, step=100, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
    ],
    outputs="text",
    title="Llama 4 Demo",
    description="Generate text using Meta's Llama 4 model",
)

demo.launch()

Create requirements.txt:

accelerate>=0.20.3
bitsandbytes>=0.41.1
gradio>=3.50.0
torch>=2.0.1
transformers>=4.34.0

3.4 Deploy to Hugging Face

Push to your Hugging Face Space:

git add app.py requirements.txt
git commit -m "Add Llama 4 deployment"
git push

3.5 Monitor Deployment

  1. Visit your Space URL: https://huggingface.co/spaces/YOUR_USERNAME/llama4-deployment
  2. The first build will take time as it needs to download and set up the model
  3. Once deployed, you'll see a Gradio interface where you can interact with the model

4. Testing and Interacting with Your Deployments

4.1 Using Python Client for API Access (AWS & Azure)

import openai

# For AWS
client = openai.OpenAI(
    base_url="YOUR_AWS_URL/v1",  # From tensorkube deployment list
    api_key="vllm-key"  # Your configured API key
)

# For Azure
client = openai.AzureOpenAI(
    azure_endpoint="YOUR_AZURE_ENDPOINT",
    api_key="YOUR_API_KEY",
    api_version="2023-05-15"
)

# Make a text completion request
response = client.completions.create(
    model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
    prompt="Write a short poem about artificial intelligence.",
    max_tokens=200
)

print(response.choices[0].text)

# For multimodal capabilities (if supported)
import base64

# Load image as base64
with open("image.jpg", "rb") as image_file:
    image_base64 = base64.b64encode(image_file.read()).decode('utf-8')

# Create chat completion with the image
response = client.chat.completions.create(
    model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Describe this image:"},
                {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
            ]
        }
    ],
    max_tokens=300
)

print(response.choices[0].message.content)

Conclusion

You now have step-by-step instructions for deploying Llama 4 models on AWS, Azure, and Hugging Face. Each platform offers different advantages:

Choose the platform that best fits your specific requirements for cost, scale, performance, and ease of management.

Explore more

Why API Documentation Is Essential

Why API Documentation Is Essential

Discover why API documentation matters in this technical guide. Learn its key role in developer success, best practices, and how Apidog simplifies creating clear, user-friendly documentation

1 July 2025

How to Get Started with PostHog MCP Server

How to Get Started with PostHog MCP Server

Discover how to install PostHog MCP Server on Cline in VS Code/Cursor, automate analytics with natural language, and see why PostHog outshines Google Analytics!

30 June 2025

A Developer's Guide to the OpenAI Deep Research API

A Developer's Guide to the OpenAI Deep Research API

In the age of information overload, the ability to conduct fast, accurate, and comprehensive research is a superpower. Developers, analysts, and strategists spend countless hours sifting through documents, verifying sources, and synthesizing findings. What if you could automate this entire workflow? OpenAI's Deep Research API is a significant step in that direction, offering a powerful tool to transform high-level questions into structured, citation-rich reports. The Deep Research API isn't jus

27 June 2025

Practice API Design-first in Apidog

Discover an easier way to build and use APIs