How to Generate UI Code using Codex (e.g., HTML, CSS)

Use Codex for UI code generation: A Step-by-step guide to creating HTML/CSS with prompts, refining designs, and integrating into workflows for efficient frontend development.

Ashley Goolam

Ashley Goolam

12 January 2026

How to Generate UI Code using Codex (e.g., HTML, CSS)

I spent an afternoon last month rebuilding a user dashboard. Fifteen repetitive React components, all with similar markup but different data shapes. Instead of copy-pasting, I fed rough sketches to OpenAI Codex and got production-ready code in minutes. The catch? You need more than just a loose prompt. This guide shows you how to wield Codex like a senior frontend engineer; precise prompts, smart workflows, and integration patterns that keep you in control.

button

What Is OpenAI Codex and Why Use It for UI Generation?

OpenAI Codex is a descendant of GPT models trained on billions of lines of public code. It translates natural language into working code across dozens of languages, but it truly shines for UI work: HTML, CSS, React, Vue, and even framework-specific component libraries. Unlike basic autocomplete, Codex understands layout intent. Tell it “a sticky navbar that collapses on scroll” and it spits out semantic HTML, accessible ARIA labels, and performance-minded CSS. You get more than boilerplate—you get patterns that follow modern best practices. For developers, this means:

The model runs via OpenAI’s API. You pay per token, so efficient prompts save money and time.

openai codex

Setup: Accessing Codex for UI Work

Step 1: Get Your API Key

  1. Go to platform.openai.com -> api-keys
  2. Click Create new secret key
  3. Store it securely: export OPENAI_API_KEY="sk-..."

Step 2: Install the Codex CLI

# Option A: OpenAI Codex CLI
npm install -g @openai/codex

# Option B: Using the SDK
npm install openai
codex cli
OpenAI Codex CLI

Or you can use Codex in VS Code via VS Code extensions.

codex with vs code

Step 3: Test Your Setup

curl https://api.openai.com/v1/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -d '{
    "model": "code-davinci-002",
    "prompt": "/* Create a responsive card with flexbox */",
    "max_tokens": 150,
    "temperature": 0.2
  }'

Expected response: A CSS snippet using display: flex, flex-wrap, and media queries. If you get an error, check your key permissions.

Step 4: Configure for UI Generation

Create a wrapper script for consistent parameters:

// codex-ui.js
const { Configuration, OpenAIApi } = require("openai");

const configuration = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);

async function generateUI(prompt, language = "html") {
  const response = await openai.createCompletion({
    model: "code-davinci-002",
    prompt: `/* Generate ${language}: ${prompt} */`,
    max_tokens: 300,
    temperature: 0.2, // Low for deterministic code
    stop: ["/*", "*/"],
  });
  return response.data.choices[0].text;
}

module.exports = { generateUI };

This wrapper enforces low temperature (less randomness) and stops at comment boundaries.

Core Prompt Engineering Patterns for UI Code

Garbage in, garbage out. The secret to great Codex output is structured prompts.

prompting codex

Pattern 1: Atomic Component Descriptions

Bad: "Make a button"

Good: "A primary button with 16px padding, blue background #3B82F6, white text, rounded corners 8px, hover state darkens to #2563EB, uses semantic <button>

// Input prompt
/* Generate HTML/CSS: A primary button with 16px padding, blue background #3B82F6,
   white text, rounded corners 8px, hover state darkens to #2563EB, disabled opacity 0.5 */

// Codex output
<button class="btn-primary" disabled>Submit</button>

<style>
.btn-primary {
  padding: 16px;
  background-color: #3B82F6;
  color: white;
  border-radius: 8px;
  border: none;
  cursor: pointer;
}
.btn-primary:hover:not(:disabled) {
  background-color: #2563EB;
}
.btn-primary:disabled {
  opacity: 0.5;
  cursor: not-allowed;
}
</style>

Pattern 2: Layout Intent with Constraints

Bad: "Make a layout"

Good: "A 3-column grid layout for desktop, collapses to single column on mobile, gap 24px, max-width 1200px, centered with auto margins, using CSS Grid"

/* Input prompt */
/* Generate CSS: 3-column grid, desktop only, 24px gap, max-width 1200px,
   mobile single column, centered */

/* Codex output */
.grid-container {
  display: grid;
  grid-template-columns: repeat(3, 1fr);
  gap: 24px;
  max-width: 1200px;
  margin: 0 auto;
  padding: 0 16px;
}

@media (max-width: 768px) {
  .grid-container {
    grid-template-columns: 1fr;
  }
}

Pattern 3: Framework-Specific Syntax

Tell Codex which framework and version:

// React 18, TypeScript, Tailwind CSS
/* Generate React component: A login form with email and password fields,
   uses useState hook, includes client-side validation for email format,
   submit button disabled until valid, Tailwind classes */

// Codex output
import React, { useState } from 'react';

export default function LoginForm() {
  const [email, setEmail] = useState('');
  const [password, setPassword] = useState('');
  
  const isValidEmail = /^[^\s@]+@[^\s@]+\.[^\s@]+$/.test(email);
  const isValidForm = isValidEmail && password.length >= 8;

  return (
    <form className="space-y-4 max-w-md mx-auto">
      <input
        type="email"
        value={email}
        onChange={e => setEmail(e.target.value)}
        className="w-full p-2 border rounded"
        placeholder="Email"
      />
      <input
        type="password"
        value={password}
        onChange={e => setPassword(e.target.value)}
        className="w-full p-2 border rounded"
        placeholder="Password"
      />
      <button
        type="submit"
        disabled={!isValidForm}
        className="w-full bg-blue-500 text-white p-2 rounded disabled:opacity-50"
      >
        Log In
      </button>
    </form>
  );
}

Practical Examples: Generating Real UI Components

Example 1: Responsive Dashboard Card

Prompt: "Generate HTML and Tailwind CSS for a dashboard card showing user stats: avatar, name, email, and three metrics (projects, tasks, teams). Use semantic HTML, ARIA labels, and a hover shadow effect."

# Using our wrapper script
node -e "require('./codex-ui').generateUI('Dashboard card with avatar, name, email, three metrics', 'html').then(console.log)"

Output (cleaned):

<article class="stat-card" aria-label="User stats for Alex Doe">
  <img src="avatar.jpg" alt="Alex Doe" class="avatar">
  <h3>Alex Doe</h3>
  <p>alex@example.com</p>
  <div class="metrics">
    <div>Projects <span>12</span></div>
    <div>Tasks <span>48</span></div>
    <div>Teams <span>3</span></div>
  </div>
</article>

<style>
.stat-card {
  @apply bg-white p-4 rounded-lg shadow-md hover:shadow-lg transition-shadow;
}
.avatar {
  @apply w-16 h-16 rounded-full mx-auto mb-2;
}
.metrics {
  @apply grid grid-cols-3 gap-2 mt-4 text-center;
}
</style>

Prompt: "CSS Grid for a photo gallery: 4 columns on desktop, 2 on tablet, 1 on mobile, gap 16px, images maintain aspect ratio, use object-fit: cover."

/* Input */
/* Generate CSS Grid: 4 columns desktop, 2 tablet, 1 mobile, 16px gap,
   maintain aspect ratio, object-fit cover */

/* Output */
.photo-grid {
  display: grid;
  grid-template-columns: repeat(4, 1fr);
  gap: 16px;
}

.photo-grid img {
  width: 100%;
  height: 250px;
  object-fit: cover;
}

@media (max-width: 1024px) {
  .photo-grid {
    grid-template-columns: repeat(2, 1fr);
  }
}

@media (max-width: 640px) {
  .photo-grid {
    grid-template-columns: 1fr;
  }
}

Example 3: Accessible Navigation Menu

Prompt: "Generate semantic HTML for a dropdown navigation menu with keyboard navigation: arrow keys, Escape to close, aria-expanded attribute, uses <ul><li>

<nav aria-label="Main navigation">
  <ul class="nav-menu">
    <li>
      <a href="/">Home</a>
    </li>
    <li class="has-dropdown">
      <button aria-expanded="false" aria-haspopup="true">Services</button>
      <ul class="dropdown">
        <li><a href="/web">Web Dev</a></li>
        <li><a href="/mobile">Mobile</a></li>
      </ul>
    </li>
  </ul>
</nav>

<script>
// Keyboard navigation logic
document.querySelectorAll('.has-dropdown button').forEach(button => {
  button.addEventListener('keydown', e => {
    if (e.key === 'Escape') {
      button.setAttribute('aria-expanded', 'false');
    }
  });
});
</script>

Advanced Codex Workflows: Scaling UI Generation

Batch Generation for Design Systems

Create a JSON manifest of components, then loop Codex calls:

// components.json
[
  {
    "name": "Button",
    "prompt": "Button component, primary, secondary, disabled variants, 8px radius, Tailwind"
  },
  {
    "name": "Modal",
    "prompt": "Modal dialog with backdrop click to close, focus trap, aria-modal=true"
  }
]

// batch-generate.js
const fs = require('fs');
const { generateUI } = require('./codex-ui');

const components = JSON.parse(fs.readFileSync('components.json', 'utf8'));

components.forEach(async ({ name, prompt }) => {
  const code = await generateUI(prompt, 'html');
  fs.writeFileSync(`./output/${name}.html`, code);
});

Refining Output with Follow-Up Prompts

Codex sometimes misses nuance. Chain prompts to iterate:

# Initial prompt
"Generate a pricing table with 3 tiers"

# Follow-up (if output lacks responsiveness)
"Make the previous pricing table stack vertically on screens below 640px"

# Follow-up (add badges)
"Add 'Most Popular' badge to middle tier, absolutely positioned top-right"

This is cheaper than one mega-prompt and gives you editorial control.

Integrating with Build Tools

Hook Codex into your dev server:

// vite.config.js
import { generateUI } from './codex-ui';

export default {
  plugins: [{
    name: 'codex-ui-generator',
    configureServer(server) {
      server.middlewares.use('/__codex', async (req, res) => {
        const { prompt } = req.query;
        const code = await generateUI(prompt, 'html');
        res.setHeader('Content-Type', 'text/plain');
        res.end(code);
      });
    }
  }]
};

// In browser: fetch('/__codex?prompt=generate%20login%20form').then(r => r.text())

Common Pitfalls & Best Practices when Using Codex

Pitfall 1: Overly Vague Prompts

Fix: Always specify layout method (Flexbox, Grid), breakpoint values, and accessibility requirements. Use the "Atomic" pattern.

Pitfall 2: Ignoring Token Limits

Fix: Codex maxes out at 4,000 tokens (prompt + output). For large components, split by section: generate layout first, then inner content.

Pitfall 3: Blindly Trusting Output

Fix: Always run generated code through linters:

# HTML validation
npx html-validate generated.html

# CSS linting
npx stylelint generated.css

Also test your generated code in a browser, check responsiveness (e.g., resize window) and use dev tools to inspect elements.

dev tools

Best Practice: Version Control Generated Code

Track .codex-prompts files alongside generated code. When you need to regenerate, you have the original prompt:

# .codex-prompts/button.prompt
/* Generate HTML/CSS: Primary button, 16px padding, #3B82F6, hover #2563EB */

Test Your Codex-Generated UI APIs with Apidog

Codex builds the frontend, but your UI is only as good as the API it consumes. When you generate forms that hit REST endpoints, validate those contracts with Apidog. Import your backend’s OpenAPI spec, generate test cases for each endpoint, and run them against your dev server.

Codex might build a beautiful login form, but Apidog confirms the /auth endpoint actually accepts the payload. It’s free to start, and it bridges the gap between AI-generated UI and reliable backend integration.

API Contrat Testing with Apidog
API Contrat Testing with Apidog

Frequently Asked Questions

Q1. Can Codex generate production-ready CSS?

Yes, if your prompts are specific. Always add accessibility attributes, responsive breakpoints, and performance hints. Treat its output as a first draft—lint and refine before shipping.

Q2. How do I handle framework-specific syntax?

Prefix your prompt with the framework and version: "React 18, TypeScript, Next.js pages router". Codex knows framework idioms.

Q3. Is there a cost difference between HTML vs React generation?

Token usage is similar. React output costs slightly more due to import statements and hooks. Monitor usage with OpenAI’s dashboard.

Q4. What’s the best temperature setting for UI code?

0.2 is the sweet spot. Lower values repeat training data; higher values get creative but stray off-task. For repetitive tasks (e.g., generating 20 similar cards), drop to 0.1.

Q5. Can I generate entire page layouts in one prompt?

Only for simple pages. Complex layouts exceed token limits. Break it down: generate header → sidebar → main content → footer, then compose.

Conclusion

OpenAI Codex transforms UI development from manual typing to guided generation. The key is prompt engineering: be atomic, specify constraints, and iterate. Start with small components, build a library of trusted prompts, and integrate Codex into your build pipeline. You’ll ship faster and maintain consistency across projects. And when those UIs talk to APIs, validate the entire stack with Apidog. The future of frontend work isn’t just AI-assisted—it’s AI-orchestrated.

button

Explore more

Top 8 AI API Providers You Should Work with in 2026

Top 8 AI API Providers You Should Work with in 2026

Discover the best AI API providers for 2026 including kie.ai, fal.ai, Replicate, and more. Compare features, pricing, and use cases to find the perfect API for your application. Expert technical review inside.

14 January 2026

What Is Eigent? The Best Open-Source Alternative to Claude Code Cowork?

What Is Eigent? The Best Open-Source Alternative to Claude Code Cowork?

Explore Eigent, the leading open-source Claude Code Cowork alternative that empowers developers with multi-agent AI for seamless coding and productivity. This guide covers features, comparisons, installation, and integrations like Apidog.

13 January 2026

What Is Claude Code Cowork?

What Is Claude Code Cowork?

Curious about Claude Code Cowork? This technical breakdown explores Anthropic's innovative AI feature that blends coding assistance with file manipulation. Discover its capabilities, from automating workflows to generating documents.

13 January 2026

Practice API Design-first in Apidog

Discover an easier way to build and use APIs