- README
- Introduction
- Authentication
- Making requests
- Streaming
- Debugging requests
- Backward compatibility
- Administration
- Audio
- Chat
- Embeddings
- Fine-tuning
- Batch
- Files
- Uploads
- Images
- Models
- Moderations
- Invites
- Users
- Projects
- Project users
- Project service accounts
- Project API keys
- Project rate limits
- Audit logs
- Usage
- Completions
- Assistants (v1)
- Threads (v1)
- Messages (v1)
- Runs (v1)
Create completion
curl --location --request POST 'https://api.openai.com/v1/completions' \
--header 'Authorization: Bearer ' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "text-davinci-003",
"prompt": "Say this is a test",
"max_tokens": 7,
"temperature": 0,
"top_p": 1,
"n": 1,
"stream": false,
"logprobs": null,
"stop": "\n"
}'
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "text-davinci-003",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
Request
Authorization: Bearer ********************
The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays. Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.
max_tokens
 cannot exceed the model's context length. Example Python code for counting tokens.top_p
 but not both.temperature
 but not both.max_tokens
 and stop
.data: [DONE]
 message. Example Python code.logprobs
 most likely tokens, as well the chosen tokens. For example, if logprobs
 is 5, the API will return a list of the 5 most likely tokens. The API will always return the logprob
 of the sampled token, so there may be up to logprobs+1
 elements in the response. The maximum value for logprobs
 is 5.best_of
 completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed. When used with n
, best_of
 controls the number of candidate completions and n
 specifies how many to return – best_of
 must be greater than n
. Note:  Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for max_tokens
 and stop
.Modify the likelihood of specified tokens appearing in the completion. Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this tokenizer tool (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token. As an example, you can pass {"50256": -100}
 to prevent the <|endoftext|> token from being generated.